SURVIVE AND THRIVE:How to Maximize Value

Wright & Company, Inc.

Petroleum Consultants

2016 Annual DEVELOPING UNCONVENTIONALS

Our Mission

Wright & Company, Inc. 's mission is to be client driven with the most reliable, responsive and cost effective professional services possible within the oil and gas industry. This mission is achieved with personal service, understanding, sound judgment and credibility.

Experience

- Founded in 1988 by D. Randall Wright, P.E.
- With over 200 years of combined experience with major integrated and independent oil and gas companies, major financial institutions and various consulting firms, our engineers and geologists offer sound judgment, experience and dedication
- Clients include major and independent exploration and production companies, investment and commercial banks, law firms, individuals and other consulting firms for specific expertise.

Services

- Property Evaluations: Evaluations of developed and undeveloped properties, both domestic and abroad, including facilities and development plans
- Audits/Reasonableness Reviews: Unbiased audits and opinions on both in-house and third party estimates of reserves and economics
- Reservoir Analysis: Formation evaluations, reservoir simulations, enhanced recoveries, work-overs, well testing, log analysis, operations and completion optimization
- Acquisition and Divestiture: Representation of sell-side, buy-side, joint venture opportunities and financial investments
- Reserves Estimation: Volumetric calculations, history match and performance, forecasting future production and cash flow

Extensive Shale Expertise

- Marcellus/Devonian > Eagle Ford
- ➤ Utica/Point Pleasant
 - AntrimNiobrara
- New AlbanyHavnesville-Bossier
- Chattanooga
- Huron
- Permian Basin
- Mississippian Lime
- Marble Falls

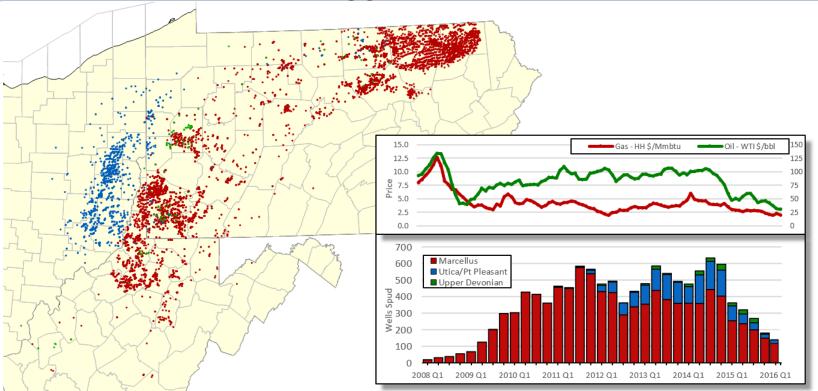
Unconventional Resource Plays

- Coal Bed Methane
- > STACK Meramac, Oswego
- Tight Gas Sands
- SCOOP Woodford
- Vertical and Horizontal

International Representation

Representation of various companies throughout the world in due diligence, reserves and economic analysis for investment opportunities in US shale plays including Marcellus, Eagle Ford, Utica, and Niobrara

Mid-Stream

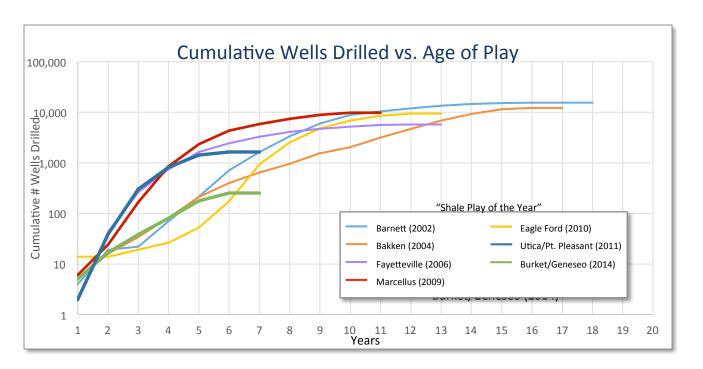

Evaluations of development plans, Estimated Ultimate Recovery determination, estimating pipeline volumes and future production rates and anticipated sales volumes

Fair Market Value

 Fairness opinions, negotiations, borrowing base determination for bank financing

DEVELOPING UNCONVENTIONAL SHALES

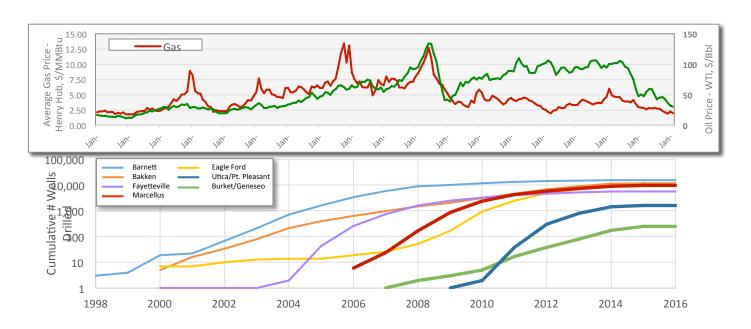
In the Appalachian Basin



DEVELOPING UNCONVENTIONAL SHALES

Comparison of Major Plays

Impacted by Product Prices



DEVELOPING UNCONVENTIONALS OVER TIME

Comparison of Major Plays

Impacted by Product Prices

...... The Juggling Act (Break even)

DEVELOPING UNCONVENTIONALS OVER TIME

Comparison of Major Plays

Cumulative Wells Per Year								
Year	Barnett	Bakken	Fayetteville	Marcellus	Eagle Ford	Utica/ Pt Pleasant	Burket/ Geneseo	
1998	3							
1999	4							
2000	19	5	1		7			
2001	22	16	1		7			46
2002	70	34	1		10			
2003	217	81	1		13			
2004	709	210	2		14			
2005	1,622	401	43		14			
2006	3,351	649	261	6	19			
2007	5,936	962	744	24	26		1	
2008	8,891	1,534	1,628	166	53		2	
2009	10,366	2,031	2,,458	856	172	1	3	
2010	12,057	3,153	3,255	2,358	930	2	5	
2011	13,521	4,675	4,114	4,375	2,530	39	17	
2012	14,538	6,850	4,709	5,856	4,823	300	38	
2013	15,174	9,142	5,194	7,388	6,796	821	80	
2014	15,568	11,554	5,635	8,952	8,590	1,420	176	
2015	15,629	12,082	5,786	9,790	9,418	1,636	252	
2016 (Q1)	15,629	12,082	5,786	9,805	9,422	1,636	252	54,

54,612

Source: DrillingInfo

ALL ABOUT BALANCE A Real Juggling Act

- 1. Wright & Company, Inc., Independent Consultant Reserves and Economics
 - ➤ How Operators Can Survive and Thrive
 - Cutting Investments and Costs
 - Improving Well Performance
 - Increasing Asset Value
- 2. Bernadette Johnson of Ponderosa Energy Advisors LLC
 - ➤ Market Analysis Macro View
 - Very Thorough Evaluation of Natural Gas and Oil Prices
 - Rigs Running throughout the World
 - Supply and Demand Metrics

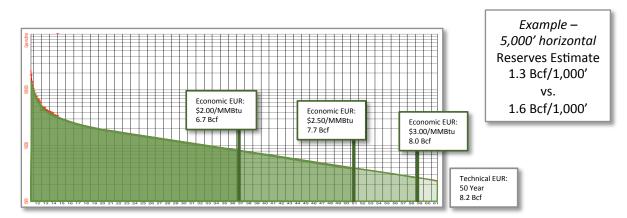
DEVELOPING UNCONVENTIONAL SHALESObservations

Unique Position – Work with many clients, many speaking at DUG East

> Evaluations for public and private operators, A&D Projects, Midstream Studies

2015 Calendar Year: Wright evaluated thousands of wells and locations in Appalachia

- ➤ Marcellus, Utica/Point Pleasant, or Burket/Geneseo
 - Multiple reviews and "look-backs" since Marcellus discovery well
- Not only Appalachian Basin, many other unconventional areas
 - Permian: West Texas
 - Barnett: North-Central Texas
 - Eagle Ford: South-Central Texas
 - SCOOP and STACK: Oklahoma Lots of new activity
 - Niobrara: Colorado and Wyoming


TECHNICAL EUR VS. ECONOMIC EUR

Economic Parameters

- "Technical" EUR Based on reservoir volumetrics/performance/analogy
- "Economic" EUR function of economic parameters pricing, operating costs

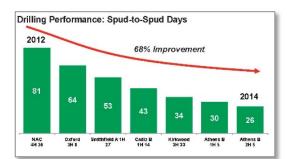
"Economic" reserves can be severely impacted in current environment

➤ Note: For undeveloped cases, use "Technical" EUR (EUR/1,000')

SURVIVE AND THRIVE How to Maximize Value

- ➤ Reduce Capital Investments and Monthly Expenses
- > Improve Overall Well Performance
- Increase Total Asset Value

> CHALLENGE: How to reduce budgets while drilling the best locations

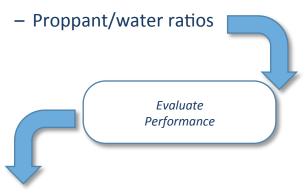


REDUCING OVERALL INVESTMENT

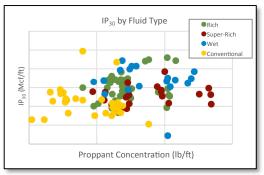
Industry Accomplishments

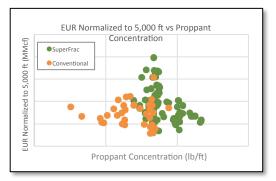
- Drilling and Completion Cost Reductions Continuing
 - AFE's for D&C less than last year and the year before
 - Drilling Rate feet/day, spud-to-spud days
 - Longer Lateral higher EUR/well
 - Completions
 - Concurrent hydraulic fracs on same pad to reduce down time

Hess - DUG East 2015



REDUCING OVERALL INVESTMENT


Completion Techniques


Frac Designs: Changes with Performance Evaluations

- ➤ Change
 - Proppant loads
 - Water volumes

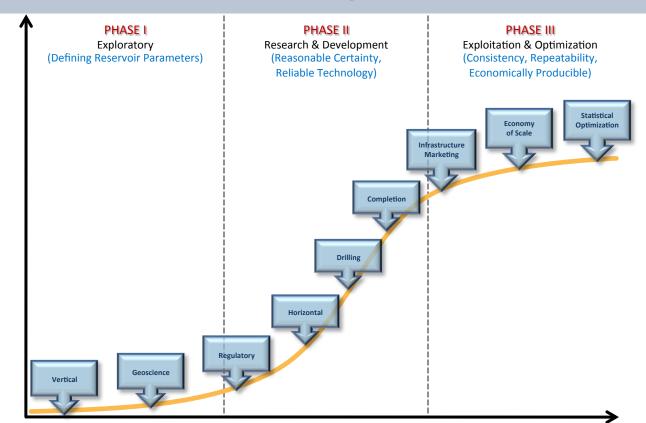
Optimal Frac Designs for success in *your* area, for *your* operations

(Use only what's works – no extra proppant, water, etc.) – find point of diminishing returns

REDUCING MONTHLY EXPENSES

Lease Operating Costs

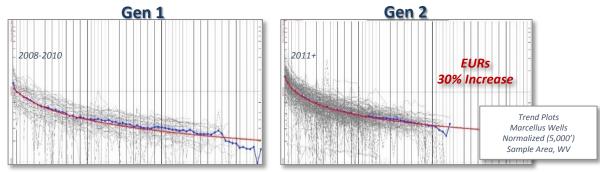
Water Recycling:


- Operator leased/purchased water tanks
- Customized Frac Designs based on Performance Evaluations
- Collect flowback water eliminate disposal cost
- Use for future well fracs cut water purchase (condition/treat water before frac)

Compression – Gathering and Transportation:

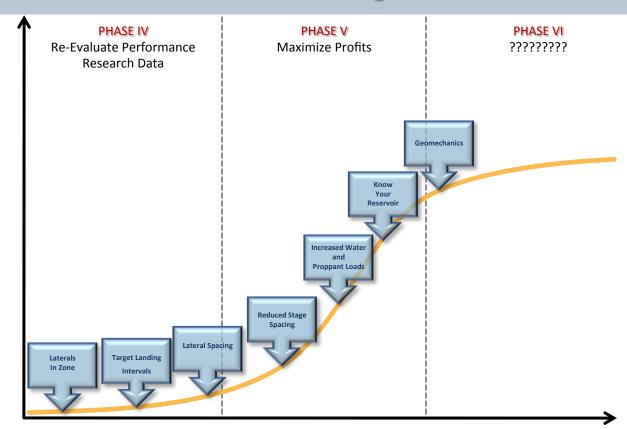
- > Rental/Own
- > Fees and Services

RESOURCE PLAY LEARNING CURVE Initial Development


IMPROVING WELL PERFORMANCE

Industry Accomplishments

Industry Accomplishments:

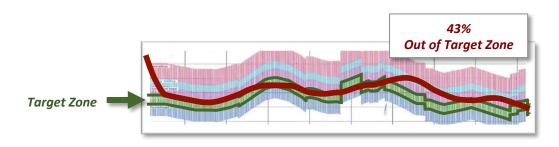

- Learning Curve Still moving up the curve
- Geologic and drilling control
 - Laterals in zone
 - Target landing intervals
- Spacing (lateral)
- > Improved frac designs
 - Reduced stage spacing
 - Increased water and proppant loads

Obtaining better wells over time - Evident in vintage evaluations

RESOURCE PLAY LEARNING CURVE Future Challenges

IMPROVING WELL PERFORMANCE

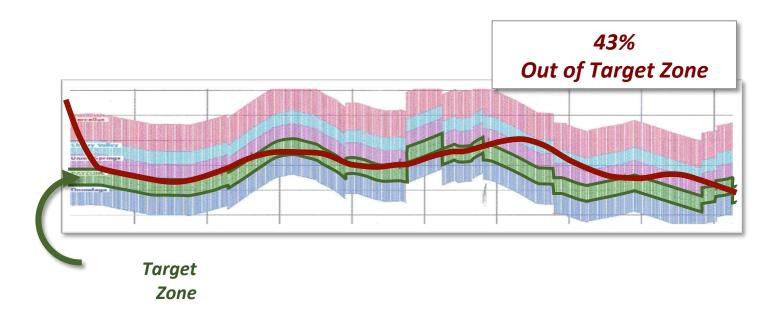
- > Accuracy of Horizontal Landing and Staying in Zone
- > Flowback Control
- Understanding Geomechanics
- Analyze/Reevaluate Archived Data


IMPROVING WELL PERFORMANCE

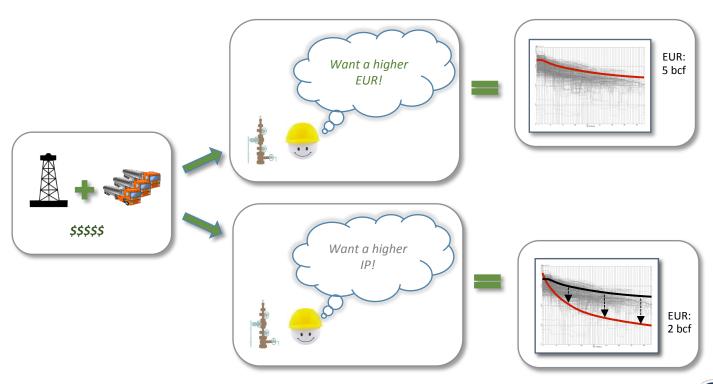
Laterals in Zone

- Challenging/complex geology with faulting in certain areas
- > Investment in 3D seismic
- Interpret and establish landing target in advance
 - Proactive vs. reactive (after out of zone)
- Geosteering Critical to success
- Additionally, design completion intervals away from faults

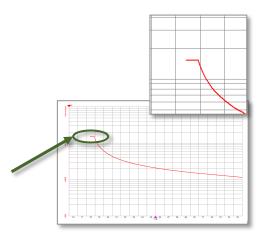
Results:


- > Stay in zone (vs. example below)
- Maintain energy of frac (avoid loss in faults)

ACCURACY OF LANDING TARGET


Staying in Zone

IMPROVING WELL PERFORMANCE


Flowback Control

IMPROVING WELL PERFORMANCE Flowback Control

- After expensive drilling and completion, May damage a well trying to achieve highest IP rate!
- Many examples of high IP wells, lower EUR
- Some operators, one step farther
 - Development plan
 - Control "resting" time or flowback rates for 3-6 months,
 - reduce risk of damage,
 - anticipate higher ultimate recovery
 - Can be particularly important in overpressured areas

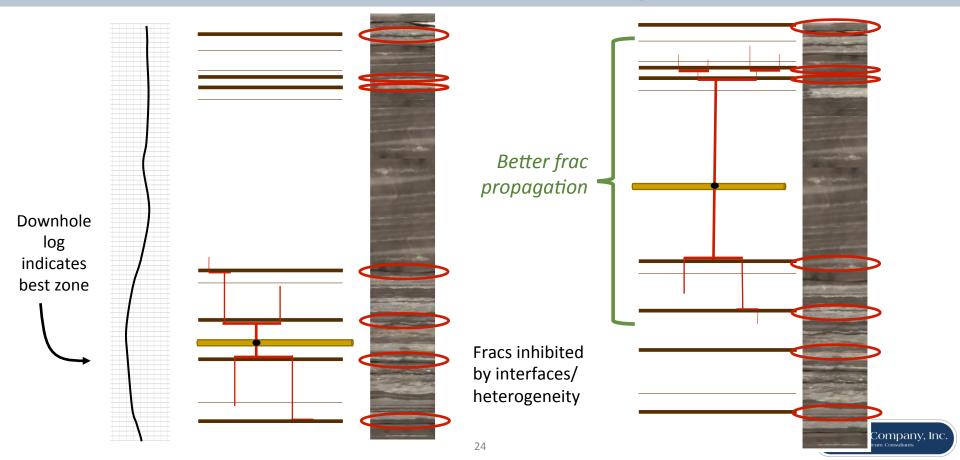
Results:

Reduce reservoir damage to achieve higher ultimate recovery

IMPROVING WELL PERFORMANCE

Know Your Reservoir

Understanding Geomechanics:


May explain variability in performance – Why do offsets perform differently?

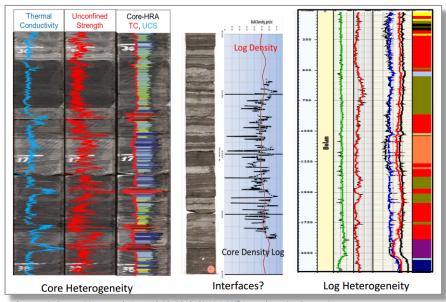
- > Traditional landing target in zone
 - Downhole logs high porosity, TOC, easier to drill
- ➤ Additional analysis
 - Cores Petrophysical, visual inspection
- ➤ Identify best interval for frac connectivity to reservoir
 - Best frac propagation avoid layers that diffuse frac energy
- Example highly laminated shale outside Appalachia
 - Cores analysis target interval based on geomechanics
 - Consistent 30% increase in well's EUR by moving entry target by only SEVEN feet

KNOW YOUR RESERVOIR

Geomechanics - Connectivity

IT ALL DEPENDS ON THE ROCK

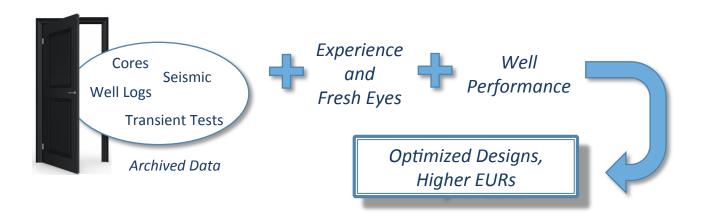
Where You Are in the Reservoir


- Variability in geologic systems
 - Resource play by definition over a large areal extent
 - Effect of interfaces and planes
 - Many transitional changes in permeability, porosity, TOC, and distribution over thousands of lateral feet
- Frac propagation Connectivity
 - Along weak planes
 - Stress orientation
 - Loss of energy
 - Near-wellbore/far-wellbore

KNOW YOUR RESERVOIR

Geomechanics

- Production data suggest each well is different
- Logs, cores, and seismic demonstrate changes in geomechanic properties
- Fracs are affected by interfaces, planes of weakness, and abrupt changes in reservoir properties



IMPROVING WELL PERFORMANCE

"What's in your vault?"

Example – Eagle Ford: Texas

- Reanalyze old cores,
- Identify best <u>geomechanic</u> target interval
- Maximize frac energy

Already spent money on it, but didn't have time to analyze

IMPROVING WELL PERFORMANCE

What it could mean to overall results:

➤ Example Economics \$/MMBtu and LOE

Typical Well: Additional Analysis:

Horizontal Shale Well 1 Vertical Core with Analysis

Dry Gas Estimated 2 - 5 MM\$

6,000-foot Lateral Identify Target Interval

D&C ~ 7 MM\$ Potential Results +25% EUR

Pad	rad Case		EUR, Bcf	Payout, yrs.	Cashflow, MM\$	PV10, MM\$	ROR, %
4 - Well Pad							
	Standard Horizontal – Simple Core	28	46.5	7.3	25.0	1.7	12.0
	with Geomechanical Model (+ 25% EUR)	33	58.2	6.5	34.4	4.4	14.3
6 - W	ell Pad						/
	Standard Horizontals – Simple Core	42	69.8	7.3	37.5	2.6	12.0
with Geomechanical Model (+ 25% EUR)		47	87.2	6.0	54.1	8.8	16.3

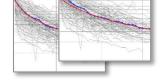
INCREASING ASSET VALUE Industry Accomplishment

"More Strategic" in Asset Development

- Consider Drivers
 - Target areas, e.g., dry gas/wet gas/oil
 - Lease expirations
 - Gas contracts, differentials, hedging
 - Volume commitments

Example of Gas Contract Impacts:

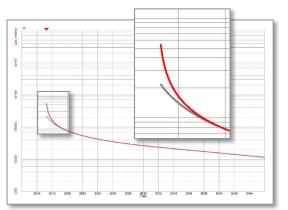
- Operators in same area
 - Same relative EUR/1,000 feet
 - Different gas contracts pipeline commitments
- Can have <u>very</u> different reserves assigned



INCREASING ASSET VALUE

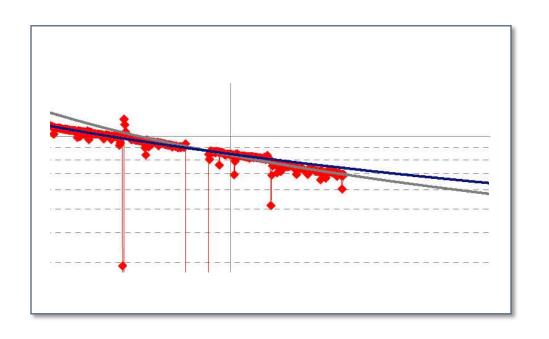
Evaluation Methods

Evaluate based on actual performance – Decline Curve Analysis

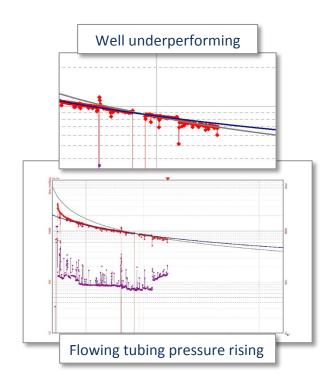

- ➤ If wells not curtailed for flowback management
- Initial period hyperbolic decline, higher b-factor
- Estimate using multi-segment curves
- Capture initial high rates
- ➤ Honor <u>all</u> data

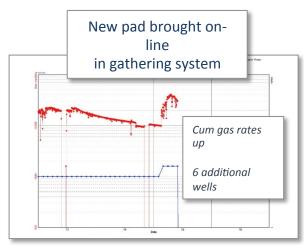
b- factors = 2.10 to 1.55 to 1.2 to 5%

Example: Reserves same, but value can change


	EUR, Bcf	PV10, \$MM
Multi-Segment Hyperbolic: I b-factor = 2.10 b-factor = 1.55 b-factor = 1.2 D _t = 5%	Higher IP	8.1
Generalized Single Hyperbol b-factor = 1.2 D _t = 5%	ic: Lower IP: 14.2	6.6

EVALUATE WELL PERFORMANCE


Decline Curve Method



EVALUATE WELL PERFORMANCE

Consider Impacts of Surrounding Operations

Example Case	EUR, bcf	Years	Cash Flow, \$MM	PV10, \$MM
Original Forecast	4.6	50	3.7	1.7
Impacted, no correction	4.1	50	2.8	1.4
Loss	11%		24%	18%

CAREFUL ANALYSIS OF PRODUCTION

Consider impacts of surface operations such as:

- ➤ If wells feeding into system with increasing pressures,
- Wells will appear to have steeper declines,
- Resulting in reduced EURs (based on Decline Curve Analysis only)

Next:

- ➤ Manage gathering system pressures (line size, compression \$'s)
- Model future rates and EURs to demonstrate no loss in reserves
- May require rate transient analysis (RTA), surface operating equipment modeling software

Results:

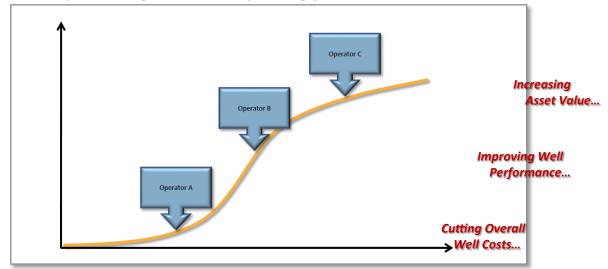
Prevented EUR loss by demonstrating negative impacts of higher system pressures on wells

MAXIMIZING VALUE Increasing Asset Value

Unique Production Performance Profile - Proved

- > All Operators are not alike
- Undeveloped locations have reserves assigned based on geology and analogy
- ➤ If a particular drilling and completion design results in wells that outperform offset operators, demonstrate the design "uptick" (prove it) across all the acreage to increase undeveloped reserves and value

Operator \neq Operator \neq Operator \in C


STUDY, RESEARCH, KNOW YOUR ACREAGE AND WHAT WORKS (Do not assume your reserves will be the same as another operator.)

SUMMARY

In the current economic environment, operators must have a strategic plan

- ➤ Utilizing all available resources
- Continuing to move up your own learning curve
- Maximize value by reducing cost and improving performance

Survive and THRIVE

THANK YOU!

D. Randall Wright (615) 370-0755 randy@wrightandcompany.com wrightandcompany.com

DEVELOPING UNCONVENTIONALS

DEVELOPING UNCONVENTIONALS

DEVELOPING UNCONVENTIONALS

